凯时

凯时|AG(AsiaGaming)优质运营商

科学研究

您现在的位置: 首页- 科学研究- 科研成员- 专职科研职员

杨钰龙 副研究员

凯时|AG(AsiaGaming)优质运营商


杨钰龙

副研究员(副教授) 博士/硕士导师

Petroleum Science 副主编

办公室:新综合楼北楼A310

邮箱:yulong.yang@cup.edu.cn


小我私家简介

2017年获得澳大利亚阿德莱德大学石油工程专业博士学位,2017年6月至今在凯时(北京)非通例油气科学手艺研究院事情,主要从事提高采收率相关的多相多组分流动及表/界面征象的研究。


研究偏向

多相多组分流动;表/界面征象

接待认真、扎实、对基础研究有浓重兴趣和强烈好奇心的同砚加入课题组,一起探索未知。


教育配景

2012.09-2016.09,博士,澳大利亚阿德莱德大学,石油工程

2009.09-2012.06,硕士,凯时(北京),油气井工程

2005.09-2009.06,学士,凯时(北京),石油工程


事情履历

2022.07至今,副研究员,凯时(北京)非通例油气科学手艺研究院

2017.06-2022.06,助理研究员,凯时(北京)提高采收率研究院


科研项目

[1]  国家自然基金面上项目,致密砂岩油藏CO2纳米气泡流体渗吸驱油微观机理及数学表征,2025.01-2028.12. (主持)

[2]  国家自然基金青年项目,低渗油藏纳米聚合物微球与低矿化度水复合深部调驱机理研究,2019.01-2021.12. (主持)

[3]  页岩气水平井井筒完整性失效机理与控制要领研究,国家自然团结基金重点项目,2018-2021. (加入)

[4]  低渗/特低渗油藏片状纳米质料-微米自顺应桥接颗粒协同控窜-调流-驱油理论研究,国家自然基金面上项目,2022-2025. (加入)

[5]  外貌活性剂在致密油藏裂痕-微纳米孔隙的多标准渗析机理研究,国家自然基金面上项目,2019-2022. (加入)

[6]  页岩油储层纳微米孔喉中油-CO2-水多元系统相行为与流念头制研究,国家自然基金面上项目,2021-2024. (加入)

[7]  低渗/特低渗油藏片状纳米质料-微米自顺应桥接颗粒协同调驱机理研究,国家自然基金面上项目,2022-2025. (加入)

[8]  双亲纳米流体制备及其提高采收率机理研究,中石油立异基金,2021-2022. (加入)

[9]  强非均质砾岩油藏CO2吞吐机理与计划优化研究,中石油战略相助项目专题使命,2020-2024. (专题认真人)

[10] 低渗/特低渗油藏微/纳米功效质料深部调驱机理研究,凯时(北京)科研启动基金,2017-2020. (主持)

[11] CO2驱气水交替WAG变比设计及测试,中石化胜利油田勘探开发研究院,2020.(认真)

[12] 二氧化碳驱混相驱波及物理模拟测试条约,中石化胜利油田勘探开发研究院,2020.(认真)

[13] 单井吞吐注气物理模拟实验,中石化石油勘探开发研究院,2017-2018.(认真)

[14] 缝洞型油藏井间气窜影响因素实验研究,中石化石油勘探开发研究院,2017-2018.(认真)


揭晓论文

期刊论文

[1]     Water impact on adsorbed oil detachment from mineral surfaces by supercritical CO2: A molecular insight. Geophysical Research Letters, 51(9), p.e2024GL108208. (自然指数期刊,中科院1TOP, 2022-2023影响因子: 5.2)

[2]     Impact of temperature and salinity on fines detachment: AFM measurements and XDLVO theory. Petroleum Science, 2024 (In Press 中科院1TOP, 2022-2023影响因子: 5.6)

[3]     Review on Physical and Chemical Factors Affecting Fines Migration in Porous Media. Water Research, 2022, 214, 118172. (自然指数期刊,中科院1TOP, 2022-2023影响因子: 13.4)

[4]     Similarity-based Laboratory study on CO2 huff-n-puff in tight conglomerate cores. Petroleum Science. 2022, 20(1), 362-369. (中科院1TOP, 2022-2023影响因子: 5.6)

[5]     Morphology of MoS2 nanosheets and its influence on water/oil interfacial tension: A molecular dynamics study. Fuel, 2022, 312, 122938. (中科院1TOP, 2022-2023影响因子: 7.4)

[6]     A Novel Polymer Gel with High-Temperature and High-Salinity Resistance for Conformance Control in Carbonate Reservoirs. Petroleum Science. 2022, 19(6), 3159-3170. (In Press,中科院1TOP, 2022-2023影响因子: 5.6)

[7]     Oil Displacement Performance Using Bilayer-Coating Microspheres. Industrial & Engineering Chemistry Research, 2021, 60(5): 2300-2313. (中科院3, 2020-2021影响因子: 3.720)

[8]     The effect of nanoparticles on reservoir wettability alteration: a critical review. Petroleum Science, 2021, 18, 136-153. (中科院1TOP, 2020-2021影响因子: 4.090)

[9]     Profile Control Using Fly Ash Three-Phase Foam Assisted by Microspheres with an Adhesive Coating. Applied Sciences, 2021, 11(8), 3616. (中科院3, 2020-2021影响因子: 2.679)

[10] Study on the Impact Pressure of Swirling-Round Supercritical CO2 Jet Flow and Its Influencing Factors. Energies, 2021, 14(1), 106. (中科院3, 2020-2021影响因子: 3.004)

[11] Stochastic and upscaled analytical modeling of fines migration in porous media induced by low-salinity water injection. Applied Mathematics and Mechanics, 2020, 41(3), 491-506. (中科院1TOP, 2020-2021影响因子: 2.866)

[12] Enhanced Oil Recovery Using Oleic Acid-Modified Titania Nanofluids: Underlying Mechanisms and Oil-Displacement Performance. Energy & Fuels, 2020, 34(5), 5813-5822. (中科院3, 2020-2021影响因子: 3.605)

[13] Kaolinite Detachment from Silica Substrate - Laboratory and Theoretical Study. International Journal of Water and Wastewater Treatment, 2020, 6(3), 1-7.

[14] Synthesis of α-starch based nanogel particles and its application for long-term stabilizing foam in high-salinity, high-temperature and crude oil environment. Journal of Petroleum Science and Engineering, 2020, 191, 107185. (中科院2TOP, 2020-2021影响因子: 4.346)

[15] Gas injection for enhanced oil recovery in two-dimensional geology-based physical model of Tahe fractured-vuggy carbonate reservoirs: karst fault system. Petroleum Science, 2020, 17(2), 419-433. (中科院1TOP, 2020-2021影响因子: 4.090)

[16] Study on the plugging performance of bilayer-coating microspheres for in-depth conformance control: experimental study and mathematical modeling. Industrial & Engineering Chemistry Research, 2019, 58(16), 6796-6810. (中科院3, 2020-2021影响因子: 3.720)

[17] Fines migration in geothermal reservoirs: Laboratory and mathematical modelling. Geothermics, 2019, 77:344-67. (中科院2, 2020-2021影响因子: 4.284)

[18] Exact Solutions for Nonlinear High Retention-Concentration Fines Migration. Transport in Porous Media, 2017, 119(2):351-372. (中科院3, 2020-2021影响因子: 3.019)

[19] Slow migration of detached fine particles over rock surface in porous media. Journal of Natural Gas Science and Engineering, 2016, 34:1159-1173. (中科院2, 2020-2021影响因子: 4.965)

[20] Mathematical modelling of fines migration in geothermal reservoirs. Geothermics, 2016, 59: 123-133. (中科院2, 2020-2021影响因子: 4.284)

[21] Deep bed and cake filtration of two-size particle suspension in porous media. Journal of Petroleum Science and Engineering, 2015, 126:201210. (中科院2TOP, 2020-2021影响因子: 4.346)

[22] Laboratory-based mathematical modelling of graded proppant injection in CBM reservoirs. International Journal of Coal Geology, 2014, 136:1-16. (中科院1TOP, 2020-2021影响因子: 6.806)

[23] Slow migration of mobilised fines during flow in reservoir rocks: Laboratory study. Journal of Petroleum Science and Engineering, 2014, 122, 534-541. (中科院2TOP, 2020-2021影响因子: 4.346)

[24] Modeling the pressure characteristics of parallel chokes used in managed pressure drilling and related experiments. Petroleum Science, 2012, 9(3): 363-369. (中科院1TOP, 2020-2021影响因子: 4.090)

聚会论文

[1] A New Phenomenon of Slow Fines Migration in Oil and Gas Fields (Laboratory and Mathematical Modelling). SPE-179027-MS. SPE International Conference and Exhibition on Formation Damage Control, Lafayette, Louisiana, USA, 2016.02.24-02.26

[2] Fines Mobilisation by Low-Salinity Water Injection: 3-Point-Pressure Tests. SPE-178947-MS. SPE International Conference and Exhibition on Formation Damage Control, Lafayette, Louisiana, USA, 2016.02.24-02.26

[3] New Laboratory Method to Assess Formation Damage in Geothermal Wells. SPE-174199-MS. SPE European Formation Damage Conference held in Budapest, Hungary, 2015.06.03-06.05

[4] Modelling of productivity decline in geothermal reservoirs due to fines migration induced formation damage. World Geothermal Congress, Melbourne, Australia, 2015.04.19-04.25

[5] Prediction of Productivity Decline in Oil and Gas Wells Due to Fines Migration: Laboratory and Mathematical Modelling. SPE-171475-MS. SPE Asia Pacific Oil & Gas Conference and Exhibition, Adelaide, 2014.10.14-10.16

相助出书专著

[1] Fines Migration in Aquifers and Oilfields: Laboratory and Mathematical Modelling. Flow and Transport in Subsurface Environment (2018): 3-67. (Springer)

[2] New Development of Air and Gas Drilling Technology. In Drilling. 2018, 163 (IntechOpen).

[3] Formation Damage Challenges in Geothermal Reservoirs. In Formation Damage During Improved Oil Recovery (2018): 447-497. (Elsevier)





【网站地图】【sitemap】