
¼ÖõÀ£¬¿Ê±£¨±±¾©£©¸±Ñо¿Ô±¡¢²©Ê¿Éúµ¼Ê¦£¬2020ÄêÈëѡѧУÓÅÒìÇàÄêѧÕßÅàÓýÍýÏë¡£2018Äê½áÒµÓÚÃÀ¹ú¿°ÈøË¹´óѧ(University of Kansas)£¬»¯Ñ§ÓëʯÓ͹¤³Ìרҵ£¬»ñFrank Bowdish Outstanding Ph.D. Award¡£ÔøÓÚÃÀ¹ú±±´ï¿ÆËû´óѧ(University of North Dakota)ʯÓ͹¤³Ìϵµ£µ±ÖúÀí½ÌÊÚ¡¢²©Ê¿Éúµ¼Ê¦£»ÓÚÃÀ¹úÇéÐÎÓëÄÜÔ´Ñо¿ÖÐÐÄ(Energy & Environmental Research Center)µ£µ±¶þ¼¶ÓͲع¤³Ìʦ,Ö÷³Ö/¼ÓÈëÃÀ¹úÄÜÔ´²¿ÓëÖÝÕþ¸®·ÇͨÀýÓÍÆøÌ↑·¢Ïà¹ØÏîÄ¿¶àÏî¡£Ñо¿Æ«ÏòΪ·ÇͨÀýÓÍÆøÌ↑·¢ÓëÌá¸ß²ÉÊÕÂÊ£¬°üÀ¨¶à¿×½éÖÊÉøÁ÷ÀíÂÛ¡¢µØÖʹ¤³ÌÒ»Ì廯Á¢Ì忪·¢ÀíÂÛ¡¢³¬µÍÉøÁ÷ÌåÏà̬ÓëÁ÷¶¯ÊµÑéºÍÄ£Äâ¡¢¶þÑõ»¯Ì¼Ìá¸ß²ÉÊÕÂÊÓë̼Âñ´æµÈ£¬ÔøÊÜÆ¸µ£µ±ÃÀ¹úµÂÖÝ´óѧ°Â˹͡·ÖУ(The University of Texas at Austin)ʯÓÍÓëµØÖÊϵͳ¹¤³ÌϵÌá¸ß²ÉÊÕÂÊʵÑéÊÒÖ÷¹Ü¡£ÒÔµÚÒ»×÷ÕßÉí·ÝÔÚSPE Journal¡¢ SPE Reservoir Evaluation & EngineeringµÈÆÚ¿¯½ÒÏþÂÛÎÄ20ÓàÆª£¬SPEµÈ¾Û»áÂÛÎÄ10ÓàÆª£»µ£µ±¶à¸öSCIÆÚ¿¯ÇàÄê±àί¡¢¿Í×ù±à¼ºÍÉó¸åÈËÊÂÇé¡£
ÓÊÏ䣺baojia90@cup.edu.cn; baojia90@gmail.com
¹È¸èѧÊõÖ÷Ò³£ºhttps://scholar.google.com/citations?user=1yKiWgsAAAAJ&hl=en
¡¾ÕÐÉúרҵ¡¿£º
£¦ ѧÊõÐÍ˶ʿ£ºÊ¯ÓÍÓë×ÔÈ»Æø¹¤³Ì082000
£¦ רҵÐÍ˶ʿ£ºÊ¯ÓÍÓë×ÔÈ»Æø¹¤³Ì085706
£¦ ѧÊõ²©Ê¿£ºÊ¯ÓÍÓë×ÔÈ»Æø¹¤³Ì082000
£¦ ¹¤³Ì²©Ê¿£º×ÊÔ´ÓëÇéÐÎ085706
¡¾½ÌÓýÅä¾°¡¿£º
£¦ 2014-08ÖÁ2018-12 University of Kansas£¨ÃÀ¹ú£© ²©Ê¿
£¦ 2012-06ÖÁ2014-08 New Mexico Institute of Mining and Technology£¨ÃÀ¹ú£© ʯÓÍÓë×ÔÈ»Æø¹¤³Ì ˶ʿ
£¦ 2008-08ÖÁ2012-06 ¿Ê±£¨»ª¶«£© ÓÍÆø´¢Ô˹¤³Ì ѧʿ
¡¾Ñо¿Æ«Ïò¡¿£º
£¦ Ò³ÑÒÓÍÆø¡¢ÖÂÃÜÓÍÆøºÍÓÍÒ³ÑÒ¸ßЧ¿ª·¢
£¦ ¶þÑõ»¯Ì¼Ìá¸ß²ÉÊÕÂÊÓë̼Âñ´æ
£¦ µØ²ã´¢ÄÜÓëµØÈÈ¿ª·¢
¡¾Ö÷ÒªÉùÓþºÍ½±Àø¡¿:
£¦ È«Çòǰ2%¶¥¼â¿ÆÑ§¼Ò
£¦ Öйú·¢Ã÷лáÁ¢Òì½±¶þµÈ½±
£¦ ¿Ê±£¨±±¾©£©ÓÅÒìÇàÄêѧÕß
£¦ SPE JournalÓÅÒìÉó¸åÈ˽±
£¦ Frank Bowdish Outstanding PhD Award
¡¾ÊÂÇéÂÄÀú¡¿£º
£¦ 2021-04ÖÁ½ñ ¿Ê±£¨±±¾©£© ¸±Ñо¿Ô±
£¦ 2020-08ÖÁ2020-12 ±±´ï¿ÆËû´óѧ(University of North Dakota)ʯÓ͹¤³Ìϵ£¨ÃÀ¹ú£© ÖúÀí½ÌÊÚ
£¦ 2019-03ÖÁ2020-08 ÄÜÔ´ÓëÇéÐÎÑо¿ÖÐÐÄ(Energy & Environmental Research Center)£¨ÃÀ¹ú£© ÓͲع¤³Ìʦ
¡¾¿ÆÑÐÏîÄ¿¡¿:
[15] ¹ú¼Ò×ÔÈ»¿ÆÑ§»ù½ðÃæÉÏ»ù½ð£¬5247040153£¬³¬ÁÙ½çË®Ôλת»¯ÓÍÒ³ÑÒ»úÀíÑо¿£¬2025-2028£¬48Íò£¬ÔÚÑУ¬Ö÷³Ö
[14] ³¤ÇìÓÍÌï·Ö¹«Ë¾¿±Ì½¿ª·¢Ñо¿Ôº£¬2023Äê2023-2024ÄêÓÍ²ØÆÀ¼ÛÒ³ÑÒÓ͹¥¹ØÊÔÑéÇøÐ§¹ûÆÀ¼Û£¬2023-2024£¬53Íò£¬ÔÚÑУ¬¼ÓÈë¡¢µÚ¶þÈÏÕæÈË
[13] ÖйúʯÓÍ×ÔÈ»Æø¹É·ÝÓÐÏÞ¹«Ë¾Î÷ÄÏÓÍÆøÌï·Ö¹«Ë¾¿±Ì½¿ª·¢Ñо¿Ôº£¬½ðÇïÇø¿éÖÂÃܺÓÁ÷ɰÑÒµØÖʹ¤³ÌÒ»Ì廯½¨Ä£¼°EURÖ÷¿ØÒòËØÑо¿£¬2023-2024£¬29.7Íò£¬ÔÚÑУ¬Ö÷³Ö
[12] ÖйúʯÓÍ×ÔÈ»Æø¹É·ÝÓÐÏÞ¹«Ë¾¿±Ì½¿ª·¢Ñо¿Ôº£¬Ò³ÑÒÓͺ£ÄÚÍâÊÖÒÕµ÷Ñм°ÆÊÎöÑо¿£¬2023-2024£¬34.8Íò£¬½áÌ⣬Ö÷³Ö
[11] ÖйúʯÓÍ»¯¹¤¹É·ÝÓÐÏÞ¹«Ë¾Ê¯ÓÍ¿±Ì½¿ª·¢Ñо¿Ôº£¬ÓÍÒ³ÑÒÔλ¿ª²ÉֹˮһÌ廯ҪÁì¼°»úÀíÑо¿£¬2022-2024£¬29.5Íò£¬ÔÚÑУ¬Ö÷³Ö
[10] ´óÇìÓÍÌïÓÐÏÞÔðÈι«Ë¾ºÍºÚÁú½Ê¡¿Æ¼¼Ìü£¬¹ÅÁúÒ³ÑÒÓÍÌá¸ß²ÉÊÕÂÊÒªº¦ÎÊÌâÑо¿£¬2021-2025£¬971.805Íò£¬ÔÚÑУ¬¼ÓÈë
[9] ÖÐʯÓÍÕ½ÂÔÏàÖú¿Æ¼¼×¨Ïî-×¼¸Á¶ûÅèµØÂêºþÖÐÏÂ×éºÏºÍ¼ªÄ¾Èø¶û½ÏàÒ³ÑÒÓ͸ßЧ¿±Ì½¿ª·¢ÀíÂÛ¼°Òªº¦ÊÖÒÕÑо¿£¬Æ½ºâѹÁÑÓëÆøÇý/ÍÌÍÂÒ»Ì廯Ìá²úÊÖÒÕ¼°Ð§¹ûÆÀ¹ÀÑо¿£¬2019-2024£¬9310Íò£¬ÔÚÑУ¬¼ÓÈ롢רÌâÈÏÕæÈË
[8] ÖÐÑë¸ßУ»ù±¾¿ÆÑлù½ð£¬2462021QNXZ004£¬Ò³ÑÒÑÒʯÎïÀíÌØÕ÷µÄ¶à±ê×¼ÕÉÁ¿ºÍÄ£Ä⣬2021-2024£¬60w£¬ÔÚÑУ¬Ö÷³Ö
[7] ÃÀ¹úÄÜÔ´²¿Department of Energy£¬Subtask 3.1 - Bakken Rich Gas Enhanced Oil Recovery£¬2020-2020£¬~$3,000,000£¬½áÌ⣬¼ÓÈë
[6] ÃÀ¹ú±±´ï¿ÆËûÖÝState Energy Research Center (SERC)£¬Crude Oil Swelling with Injected Produced Gas and CO2 as a Potential Mechanism for Enhanced Oil Recovery (EOR) in the Bakken£¬2019-2020£¬$117,611£¬½áÌ⣬Ö÷³Ö
[5] ÃÀ¹ú±±´ï¿ÆËûÖÝNorth Dakota Pipeline AuthorityºÍNorth Dakota Industrial Commission£¬Assessment of Bakken and Three Forks Natural Gas Compositions£¬2019-2020£¬$300,650£¬½áÌ⣬¼ÓÈë
[4] ÃÀ¹ú±±´ï¿ÆËûÖÝNorth Dakota Industrial Commission£¬Underground Storage of Produced Natural Gas ¨C Conceptual Evaluation and Pilot Project(s)£¬2019-2021£¬~$6,000,000£¬½áÌ⣬¼ÓÈë
[3] ÂíÀËÉʯÓ͹«Ë¾Marathon Petroleum Corporation£¨ÃÀ¹ú£©£¬Evaluation and Quantification of CO2 Sorption in Bakken Shale and Interactions Between C02 and Three Forks Rock and Brine£¬2019-2020£¬$525,000£¬½áÌ⣬¼ÓÈë
[2] ÇÐÈøÆ¤¿ËÄÜÔ´¹«Ë¾Chesapeake Energy£¨ÃÀ¹ú£©£¬Gas Huff and Puff to improve oil recovery in the Eagle Ford£¬2016-2018£¬~$110,000£¬½áÌ⣬¼ÓÈë
[1] ÃÀ¹úÄÜÔ´²¿Department of Energy£¬Nanoparticle-Stabilized CO2 Foam for CO2 EOR Application£¬2010-2015£¬$ $1,158,822£¬½áÌ⣬¼ÓÈë
¡¾²¿·ÖÒ»×÷/ͨѶÆÚ¿¯ÂÛÎÄ¡¿:
[23] ³¬µÍÉøÖÂÃÜɰÑÒºÍÒ³ÑÒ´¢²ãÉøÁ÷ÄÜÁ¦Ë²Ì¬·¨ÆÀ¼ÛÏ£Íû£¬Ê¯ÓÍ¿ÆÑ§×ª´ï£¬2024, 9(4), 659-678.
[22] Oil Shale In Situ Production Using a Novel Flow-Heat Coupling Approach. ACS omega, 2024, 9(7), 7705-7718.
[21] Machine learning and UNet++ based microfracture evaluation from CT images. Geoenergy Science and Engineering, 2023, 226, 211726.
[20] Improved Petrophysical Property Evaluation of Shaly Sand Reservoirs Using Modified Grey Wolf Intelligence Algorithm. Computational Geosciences, 2023, 27(4), 537-549.
[19] Status and outlook of oil field chemistry-assisted analysis during the energy transition period. Energy & Fuels, 2022, 36(21), 12917-12945.
[18] Mechanistic Understanding of Delayed Oil Breakthrough in Near-Critical Point Shale Oil Reservoirs. In SPE Eastern Regional Meeting (p. D031S005R003). 2022. SPE.
[17] Permeability measurement of the fracture-matrix system with 3D embedded discrete fracture model. Petroleum Science, 2022, 19(4), 1757-1765. £¨¸ß±»ÒýÂÛÎÄ£©
[16] Investigations of CO2 storage capacity and flow behavior in shale formation. Journal of Petroleum Science and Engineering, 2021, 208, 109659.
[15] Pore pressure dependent gas flow in tight porous media. Journal of Petroleum Science and Engineering, 2021, 205, 108835.
[14] Extension of the Gas Research Institute (GRI) method to measure the permeability of tight rocks. Journal of Natural Gas Science and Engineering, 2021, 91, 103756.
[13] Intelligent materials in unconventional oil and gas recovery. In Sustainable Materials for Oil and Gas Applications (pp. 175-206). 2020, Gulf Professional Publishing.
[12] An integrated approach of measuring permeability of naturally fractured shale. Journal of Petroleum Science and Engineering, 2020, 186, 106716.
[11] Carbonated water injection (CWI) for improved oil recovery and carbon storage in high-salinity carbonate reservoir. Journal of the Taiwan Institute of Chemical Engineers, 2019, 104, 82-93.
[10] Revisiting approximate analytical solutions of estimating low permeability using the gas transient transmission test. Journal of Natural Gas Science and Engineering, 2019, 72, 103027.
[9] Investigation of shale-gas-production behavior: evaluation of the effects of multiple physics on the matrix. SPE Reservoir Evaluation & Engineering, 2019, 23(01), 068-080.
[8] Measurement of CO2 diffusion coefficient in the oil-saturated porous media. Journal of Petroleum Science and Engineering, 2019, 181, 106189.
[7] Multiphysical flow behavior in shale and permeability measurement by pulse-decay method. In Petrophysical characterization and fluids transport in unconventional reservoirs (pp. 301-324). 2019, Elsevier.
[6] A review of the current progress of CO2 injection EOR and carbon storage in shale oil reservoirs. Fuel, 2019, 236, 404-427. £¨¸ß±»Òý¡¢ÈÈÃÅÂÛÎÄ£©
[5] Insights into the Gas Transmission Test at Multiscale Based on Discrete-Fracture Model and History Matching. In SPE Eastern Regional Meeting (p. D033S004R005). 2018. SPE.
[4] Experimental and numerical investigations of permeability in heterogeneous fractured tight porous media. Journal of Natural Gas Science and Engineering, 2019, 58, 216-233.
[3] Role of molecular diffusion in heterogeneous, naturally fractured shale reservoirs during CO2 huff-n-puff. Journal of Petroleum Science and Engineering, 164, 31-42.
[2] A workflow to estimate shale gas permeability variations during the production process. Fuel, 220, 879-889.
[1] Different flow behaviors of low-pressure and high-pressure carbon dioxide in shales. SPE Journal, 23(04), 1452-1468.