¿­Ê±

½ÌÊÚ/Ñо¿Ô±

Âí½Ü

Âí½Ü £¬½ÌÊÚ¡¢²©Ê¿Éúµ¼Ê¦ £¬ÏÖ¾ÍÖ°ÓÚ¿­Ê±£¨±±¾©£©»¯Ñ§¹¤³ÌÓëÇéÐÎѧԺ £¬Í¬Ê±ÎªÖØÖÊÓ͹ú¼ÒÖصãʵÑéÊÒÀο¿³ÉÔ±¡£2009Äê±¾¿Æ½áÒµÓÚ±±¾©´óѧÇéÐοÆѧרҵ £¬2011Äê˶ʿ½áÒµÓÚÃÀ¹úRice UniversityÇéÐ餳Ìרҵ £¬2013Ä격ʿ½áÒµÓÚÃÀ¹úRice UniversityÇéÐ餳Ìרҵ £¬µ¼Ê¦ÎªPedro Alvarez½ÌÊÚ£¨ÃÀ¹ú¹¤³ÌԺԺʿ¡¢Öйú¹¤³ÌÔºÍ⼮Ժʿ£©¡£Âí½Ü½ÌÊÚºã¾Ã¾Û½¹ÓÚ¡°ÎÛȾ԰µØΣº¦ÆÀ¹ÀÓëÐÞ¸´¡±·½ÃæµÄÑо¿ £¬×ÔÁ¦³öÊéÁ˺£ÄÚÊײ¿ÓйØVOCsÎÛȾ԰µØÖÎÀíµÄѧÊõרÖø¡¶ÎÛȾ԰µØVOCsÕôÆøÈëÇÖΣº¦ÆÀ¹ÀÓë¹Ü¿Ø¡· £¬½ÒÏþÂÛÎĵÚÒ»/ͨѶ×÷ÕßSCIÂÛÎÄ35ƪ £¬°üÀ¨7ƪEnvironmental Science & TechnologyºÍ3ƪWater Research £¬1ƪÂÛÎÄÈëÑ¡ESI¸ßÒýÂÛÎÄ £¬1ƪÆÚ¿¯·âÃæÂÛÎÄ¡£ÁíÍ⻹ÏàÖú±àд±¾¿ÆÉú¿Î±¾1²¿¡¢Ó¢ÎÄѧÊõרÖø1Õ¡£µ£µ±¡¶Petroleum Science¡·ºÍ¡¶Water Environmental Research¡·ÇàÄê±à¼­ £¬¡¶Geofluids¡·¿Í×ù±à¼­¡£³ý»ù´¡Ñо¿ÒÔÍâ £¬»¹¼ÓÈëÁ˺£ÄÚ¶à¸öÎÛȾ԰µØµÄÊÓ²ìÆÀ¹ÀÑо¿ÊÂÇé £¬²¢¼ÓÈë¶àÏîÔ°µØ¹ú¼Ò±ê×¼£¨HJ±ê×¼£©µÄÖƶ© £¬µ£µ±Ê®Óà¸öÊ¡ÊÐÉú̬ÇéÐεÄÍÁÈÀÎÛȾ·ÀÖÎר¼Ò¿â³ÉÔ±¡£ÏȺó»ñµÃÇéÐα£»¤¿Æѧ¶þµÈ½±ÊÖÒÕ½±£¨µÚ¶þÍê³ÉÈË£©£¨2021Ä꣩ £¬±±¾©ÊпƼ¼ÐÂÐÇ£¨2018Ä꣩ £¬Ð£ÓÅÒìÇàÄêѧÕߣ¨2022£©¡¢Ð£ÇàÄê°Î¼âÈ˲ţ¨2014Ä꣩µÈ½±Ïî¡£

ÓÊÏ䣺rubpmj@sina.com


¡¾½ÌÓýÂÄÀú¡¿

2011-2013 ÃÀ¹úRice University  ÇéÐι¤³Ì²©Ê¿  µ¼Ê¦£ºPedro AlvarezԺʿ

2009-2011 ÃÀ¹úRice University  ÇéÐ餳Ì˶ʿ  µ¼Ê¦£ºPedro AlvarezԺʿ

2005-2009 ±±¾©´óѧ  ÇéÐÎѧԺ ÇéÐοÆѧѧʿ


¡¾ÊÂÇéÂÄÀú¡¿

2021-ÖÁ½ñ ¿­Ê±  ½ÌÊÚ

2015-2021  ¿­Ê±  ¸±½ÌÊÚ

2014-2015  ¿­Ê±  ½²Ê¦

2013-2014  ÃÀ¹úRice University  ²©Ê¿ºó


¡¾½ÌѧÊÂÇé¡¿

ÇéÐÎ΢ÉúѧÎ±¾¿ÆÉú£©

ÇéÐÎÉúÎ﹤³Ì£¨Ñо¿Éú£©

Éú²úʵϰ£¨±¾¿ÆÉú£©

ÈÏ֪ʵϰ£¨±¾¿ÆÉú£©

¸ßµÈÒÇÆ÷ÆÊÎö£¨Ñо¿ÉúÈ«Ó¢ÎĿΣ©

ÇéÐοÆѧÓ빤³ÌÇ°Ñؽ²×ù£¨Ñо¿Éú£©


¡¾Ñо¿ÁìÓò¡¿

l ÎÛȾ԰µØÊÓ²ìÓëΣº¦ÆÀ¹À

l ÎÛȾ԰µØÐÞ¸´ÓëΣº¦¹Ü¿Ø

l VOCsÔÚÍÁÈÀµØÏÂË®ÇéÐÎÖеÄǨáãת»¯¹éÇ÷

l VOCsÕôÆøÈëÇÖÊÓ²ìÆÀ¹À

l ¼à¿Ø×ÔȻ˥¼õÓëÇ¿»¯×ÔȻ˥¼õ

l »¯Ñ§Ñõ»¯ñîºÏÉúÎïÐÞ¸´

l ¶àÏà³éÌá¡¢ÆøÏà³éÌáÓëÉúÎï͸·ç¡¢µØÏÂË®ÆØÆøÓëÉúÎïÆØÆø


¡¾Ñо¿ÏîÄ¿¡¿

Ö÷³Ö×ÝÏò¿ÎÌâ9Ï¹ú¼Ò¼¶3Ïî £¬Ê¡²¿¼¶2Ï £¬ºáÏò¿ÎÌâ10Ïî

1. ¹ú¼Ò×ÔÈ»¿Æѧ»ù½ðÃæÉÏÏîÄ¿£¨42177042£© £¬Ê¯ÓÍÎÛȾ԰µØÆøÏà×ÔȻ˥¼õ»úÀíÑо¿ÓëÆÀ¹ÀÒªÁì¹¹½¨ £¬2022/1-2025/12 £¬74.1Íò £¬ÔÚÑÐ £¬Ö÷³Ö

2. ¹ú¼Ò×ÔÈ»¿Æѧ»ù½ðÃæÉÏÏîÄ¿£¨21878332£© £¬¹ýÁòËáÑλ¯Ñ§Ñõ»¯-Ç¿»¯ÉúÎï½µ½âñîºÏÐÞ¸´Ê¯ÓÍÎÛȾÍÁÈÀÑо¿ £¬2019/1-2022/12 £¬79.2Íò £¬ÔÚÑÐ £¬Ö÷³Ö

3. ¹ú¼Ò×ÔÈ»¿Æѧ»ù½ðÇàÄêÏîÄ¿£¨21407180£© £¬»ùÓÚÖùʵÑéºÍÊýֵģ×ÓÄ£ÄâÑо¿ÍÁÈÀÆøÌå¶ÔÁ÷¹ØÓÚÕôÆûÈëÇÖÀú³ÌµÄÓ°Ïì £¬2015/1-2017/12 £¬25Íò £¬ÒѽáÌâ £¬Ö÷³Ö

4. ±±¾©ÊпÆѧÊÖÒÕίԱ»á ±±¾©ÊпƼ¼ÐÂÐÇÈ˲ÅÍýÏ루Z181100006218088£© £¬ISCO»¯Ñ§Ñõ»¯ñîºÏÉúÎïÇ¿»¯ÐÞ¸´Ò©¼ÁÅä·½¿ª·¢¼°»úÀíÑо¿ £¬2018/1-2020/12 £¬35Íò £¬ÒѽáÌâ £¬Ö÷³Ö

5. ÖÐʯÓͿƼ¼Á¢Òì»ù½ð£¨2018D-5007-0607£© £¬Ê¯ÓÍÎÛȾÍÁÈÀ»¯Ñ§Ñõ»¯ñîºÏÉúÎïÐÞ¸´µÄÀíÂÛ̽Ë÷¼°ÊÖÒÕ¿ª·¢ £¬2018/7-2020/6 £¬18Íò £¬ÒѽáÌâ £¬Ö÷³Ö

6. ¿­Ê±£¨±±¾©£©ÓÅÒìÇàÄêѧÕßÈ˲Żù½ð£¨2462022QNXZ006£© £¬½ü×ÔÈ»µÄʯÓÍÎÛȾÎﺬˮ²ãÐÞ¸´ÒªÁìÑо¿ £¬2022/6-2024/12 £¬20Íò £¬ÔÚÑÐ £¬Ö÷³Ö

7. ¿­Ê±£¨±±¾©£©ÇàÄê°Î¼âÈ˲Żù½ð£¨2462014YJRC016£© £¬ÆûÓÍÖÐÐÂÐÍÓлúÎÛȾÎïÕôÆûÈëÇÖΣº¦µÄÄ£ÄâÑо¿ £¬2015/1-2017/12 £¬40Íò £¬ÒѽáÌâ £¬Ö÷³Ö

8. ¿­Ê±£¨±±¾©£©Ñ§Ôº×ÔÖ÷¿ÎÌ⣨2462022YXZZ011£© £¬Ê¯ÓÍÎÛȾÎïÔ°µØ±¾Ô´ÐÞ¸´ÊÖÒÕÑо¿ £¬2022/1-2022/12 £¬20Íò £¬ÔÚÑÐ £¬Ö÷³Ö

9. ʯÓÍʯ»¯ÎÛȾÎï¿ØÖÆÓë´¦Öóͷ£¹ú¼ÒÖصãʵÑéÊÒ¿ª·Å¿ÎÌ⣨PPC2019019£© £¬Á¶»¯Ô°µØÄѽµ½âÓлúÎïµÄ·ÇÉúÎï×ÔȻ˥¼õ;¾¶Ñо¿ £¬2020/1-2021/12 £¬15Íò £¬ÒѽáÌâ £¬Ö÷³Ö


¡¾»ñµÃ½±Àø¡¿

È˲ųƺô

1. 2021Äê»ñ¿­Ê±ÓÅÒìÇàÄêѧÕߣ¨A¸Ú£©

2. 2021Äê»ñWater Environment Research New Engineer to Watch £¨È«Çò¹²11ÈËÈëÑ¡£©

3. 2017Äê»ñ±±¾©ÊпƼ¼ÐÂÐÇ

4. 2014Äê»ñ¿­Ê±ÇàÄê°Î¼âÈ˲ţ¨A¸Ú£©

¾Û»á/ÂÛÎĽ±Àø

1. 2021Äê»ñµÃÇéÐα£»¤¿ÆѧÊÖÒÕ¶þµÈ½±£¨µÚ¶þÍê³ÉÈË£©

2. 2018Äê»ñ¹ú¼Ò×ÔÈ»»ù½ðίµÚ°Ë½ì»¯¹¤ÇàÄêѧÕß½»Á÷»á×î¼Ñ±¨¸æ½±

3. 2017Äê»ñ¹ú¼Ò×ÔÈ»»ù½ðίµÚÈý½ìµØÏÂË®ÇàÄê¿ÆѧÂÛ̳×î¼Ñ¿ÚÍ·±¨¸æ½±

4. 2012Äê»ñµÚ°Ë½ìBattelle Chlorinated Conference×î¼ÑÂÛÎĽ±

5. 2012Äê»ñTexas WaterÄê»á×î¼ÑÂÛÎĽ±

6. 2011Äê½ÒÏþÔÚ¡¶Ground Water Monitoring & Remediation¡·ÉϵÄÂÛÎı»Ñ¡ÎªÆÚ¿¯·âÃæÂÛÎÄ


¡¾Ñ§Êõ¼æÖ°¡¿

1. ¡¶Water Environment Research¡·ÇàÄê±à¼­

2. ¡¶Petroleum Science¡·ÇàÄê±à¼­

3. ¡¶Geofluids¡·¿Í×ù±à¼­


¡¾Éç»á¼æÖ°¡¿

±±¾©¡¢ÖØÇì¡¢¹ã¶«¡¢É½¶«¡¢É½Î÷¡¢ºÓ±±¡¢ÁÉÄþ¡¢¼ªÁÖ¡¢ÉîÛÚ¡¢ÇൺÍÁÈÀÎÛȾ·ÀÖÎר¼Ò¿â³ÉÔ±


¡¾ÂÛÎÄÖø×÷¡¿

ѧÊõרÖø

Âí½Ü(2020) ¡¶ÎÛȾ԰µØVOCsÕôÆøÈëÇÖΣº¦ÆÀ¹ÀÓë¹Ü¿Ø¡·¿Æѧ³öÊéÉç±±¾©54Íò×Ö

¿­Ê±|AG(AsiaGaming)ÓÅÖÊÔËÓªÉÌ

¿­Ê±|AG(AsiaGaming)ÓÅÖÊÔËÓªÉÌ

µÚÒ»»òͨѶ×÷Õߣ¨*ΪͨѶ×÷Õߣ©

1. Ma, J., Rixey, W. G., and Alvarez, P.J.* (2013) Microbial processes influencing the transport, fate and groundwater impacts of fuel ethanol releases. Current Opinion in Biotechnology 24(3): 457-466.£¨SCI, EI, IF 8.288£©

2. Ma, J.*, McHugh, T., Beckley, L., DeVaull, G., Lahvis, M., and Jiang, L. (2020) Vapor intrusion investigations and decision-making: A critical review. Environmental Science & Technology 54(12): 7050-7069.£¨SCI, EI, IF 7.864£©

3. Ma, J., McHugh, T.*, Eklund, B. (2020) Flux chamber measurements should play a more important role in contaminated site management. Environmental Science & Technology 54(19): 11645-11647.£¨SCI, EI, IF 7.864£©

4. Zhang, R., Jiang, L.*, Zhong, M.*, Han, D., Zheng, R., Fu, Q., Zhou, Y.* and Ma, J.*(2019) Applicability of soil concentration for VOC-contaminated site assessments explored using field data from the Beijing-Tianjin-Hebei urban agglomeration. Environmental Science & Technology 53(2): 789-797.£¨SCI, EI, IF 7.864£©

5. Ma, J. *, Jiang, L.*, Lahvis, M. * (2018) Vapor intrusion management in China: lessons learned from the United States. Environmental Science & Technology 52(6): 3338-3339£¨SCI, EI, IF 7.864£©

6. Yao, Y., Wu, Y., Wang, Y., Verginelli, I., Zeng, T., Suuberg, E.M., Jiang, L., Wen, Y.*, Ma, J.*, (2015) A petroleum vapor intrusion model involving upward advective soil gas flow due to methane generation. Environmental Science & Technology 49(19): 11577-11585.£¨SCI, EI, IF 7.864£©

7. Ma, J., Luo, H., DeVaull, G.E., Rixey, W.G., and Alvarez, P.J.* (2014) Numerical model investigation for methane explosion and benzene vapor intrusion potential associated with ethanol-blended fuel releases. Environmental Science & Technology 48(1): 474-481.£¨SCI, EI, IF 7.864£©

8. Ma, J., Rixey, W. G., DeVaull, G. E., Stafford, B. P., and Alvarez, P. J.* (2012) Methane bioattenuation and implications for explosion risk reduction along the groundwater to soil surface pathway above plume of dissolved ethanol. Environmental Science & Technology 46(11): 6013-6019.£¨SCI, EI, IF 7.864£©

9. Ma, Y., Feng, Y, Feng, Y.L., Liao, G.M., Sun, Y., Ma, J.*(2020) Characteristics and mechanisms of controlled-release KMnO4 for groundwater remediation: experimental and modeling investigations. Water Research 171: 115385.£¨SCI, EI, IF 9.13£©

10. Ma, J.*, Nossa, Carlos W., and Alvarez, P.J. (2015) Groundwater ecosystem resilience to organic contaminations: microbial and geochemical dynamics throughout the 5-year life cycle of a surrogate ethanol blend fuel plume. Water Research 80: 119-129.£¨SCI, EI, IF 9.13£©

11. Ma, J., Rixey, W.G., and Alvarez, P.J.*, (2015) Increased fermentation activity and persistent methanogenesis in a model aquifer system following source removal of an ethanol blend release. Water Research 68: 479-486.£¨SCI, EI, IF 9.13£©

12. Ma, J., Yang, X., Jiang, X., Wen, J., Li, J., Zhong, Y., Chi, L. and Wang, Y.* (2020) Percarbonate persistence under different water chemistry conditions. Chemical Engineering Journal, 389: 123422£¨SCI, EI, IF 10.652£©

13. Ma, J.*, Xiong, D., Li, H., Ding, Y., Xia, X., Yang, Y., (2017) Vapor intrusion risk of fuel ether oxygenates methyl tert-butyl ether (MTBE), tert-amyl methyl ether (TAME) and ethyl tert-butyl ether (ETBE): A modeling study. Journal of Hazardous Materials 332: 10-18£¨SCI, EI, IF 9.038£©

14. Ma, J.*, Yan, G.*, Li, H., Guo, S. (2016) Sensitivity and uncertainty analysis for Abreu & Johnson numerical vapor intrusion model. Journal of Hazardous Materials 304: 522-531.£¨SCI, EI, IF 9.038£©

15. Ma, J.*#, Li, H.#, Spiese, R., Wilson, J., Guo, S., and Yan, G. (2016) Vapor intrusion risk of lead scavengers 1,2-dibromoethane (EDB) and 1,2-dichloroethane (DCA). Environmental Pollution 213: 825-832.£¨SCI, EI, IF 6.793£©

16. Ma, J., Deng Y., Yuan T., Zhou J., and Alvarez, P.J.* (2015) Succession of microbial functional communities in response to a pilot-scale ethanol-blended fuel release throughout the plume life cycle. Environmental Pollution 198: 154-160.£¨SCI, EI, IF 6.793£©

17. Ma, J., Nossa, Carlos W., Xiu, Z.M., Rixey, W.G., and Alvarez, P.J.* (2013) Adaptive microbial population shifts in response to continuous ethanol blend release increases biodegradation potential. Environmental Pollution 178: 419-425.£¨SCI, EI, IF 6.793£©

18. Ma, J.*, Xie, X., Ma, Y., Luo, Y., Zhong, Y., (2018) Stability of dissolved percarbonate and its implications for groundwater remediation. Chemosphere 205:41-44.£¨SCI, EI, IF 5.778£©

19. Ma, J.*, Yang, Y., Jiang, X., Xie, Z., Li, X., Chen, C., Chen, H., (2018) Impacts of inorganic anions and natural organic matter on thermally activated persulfate oxidation of BTEX in water. Chemosphere 190:296-306.£¨SCI, EI, IF 5.778£©

20. Ma, J.*, Li, H., Chi, L.,(2018) Response to the comments on ¡®¡®Changes in activation energy and kinetics of heat-activated persulfate oxidation of phenol in response to changes in pH and temperature¡¯¡¯ by Ma, J., Li, H., Chi, L., Chen, H., & Chen, C. [Chemosphere 189 (2017) 86¨C93]. Chemosphere 194:403-404.£¨SCI, EI, IF 5.778£©

21. Ma, J.*, Li, H., Chi, L., Chen, H., Chen, C.,(2017) Changes in activation energy and kinetics of heat-activated persulfate oxidation of phenol in response to changes in pH and temperature. Chemosphere 189:86-93.£¨SCI, EI, IF 5.778£©

22. Ma, J., Yang, Y., Dai, X., Chen, Y., Deng, H., Zhou, H., Guo, S., Yan, G.*, (2016) Effects of adding bulking agent, inorganic nutrient and microbial inocula on biopile treatment for oil-field drilling waste. Chemosphere 150:17-23.£¨SCI, EI, IF 5.778£©

23. Ma, J.*, Ma, Y., Rong, X., Song, Q., Wu, B., Lan, X., Feng, Y., Qiu, X. and Zhang, P. (2021) Persulfate-based controlled release beads for in situ chemical oxidation of common organic pollutants. Journal of Environmental Chemical Engineering 9(5), 105627. £¨SCI, EI, IF 5.909£©

24. Cai, B.#, Ma, J.#, Yan, G.*, Dai, X., Li, M. and Guo, S. (2016) Comparison of phytoremediation, bioaugmentation, and natural attenuation for remediating saline soil contaminated by heavy crude oil. Biochemical Engineering Journal 112:170-177.£¨SCI, EI, IF3.475£©

25. Sun, Y., Ma, J.*, Yue, G.., Liu, S., Liu, H., Song, Q., and Wu, B. (2021) Comparisons of four methods for measuring total petroleum hydrocarbons and short-term weathering effect in soils contaminated by crude oil and fuel oils. Water Air and Soil Pollution 239(9): 381 £¨SCI, EI, IF 1.9£©

26. Ma, J., Yang, Y., Dai, X., Li, C., Chen, C., Wang, Q., Yan, G.*and Guo, S. (2016) Bioremediation enhances the pollutant removal efficiency of soil vapor extraction (SVE) in treating petroleum drilling waste. Water Air and Soil Pollution 227(12): 465.£¨SCI, EI, IF 1.9£©

27. Ma, J., Yan, G.*, Ma, W., Cheng, C., Wang, Q., Guo, S. (2015) Isolation and characterization of oil-degrading microorganisms for bench-scale evaluations of autochthonous bioaugmentation for soil remediation. Water Air and Soil Pollution 226(8): 1-10.£¨SCI, EI, IF 1.9£©

28. Ma, J.*, and Matt, L.(2020) Rationale for Soil Gas Sampling to Improve Vapor Intrusion Risk Assessment in China. Ground Water Monitoring & Remediation 40(1): 12-13.£¨SCI, EI, IF 1.283£©

29. Ma, J., Xiu, Z.M., Monier, A.L., Mamonkina, I., Zhang, Y., He, Y.Z., Stafford, B.P., Rixey, W.G., and Alvarez, P.J.* (2011) Aesthetic groundwater quality impacts from a continuous pilot-scale release of an ethanol blend. Ground Water Monitoring & Remediation 31(3): 47-54.£¨SCI, EI, IF 1.283£©

30. Ma, J.*, Ding, Y., Gu, C., Zhai, G., Liu, Y., Wen, J., Rong, X., Luo, C., Qiu, Y., and Zhang, P.* (2021) Degradation of benzothiazole pollutant by sulfate radical-based advanced oxidation process. Environmental Technology DOI: 10.1080/09593330.2021.1906326£¨SCI, EI, IF 2.213£©

31. Ma, J.*, Ding, Y., Chi, L., Yang, X., Zhong, Y., Wang, Z. and Shi, Q. (2021) Degradation of benzotriazole by sulfate radical-based advanced oxidation process. Environmental Technology, 42(2): 238-247£¨SCI, EI, IF 2.213£©

32. Ma, J.*, Feng, Y., Yang, X., Wu, Y., Wang, S., Zhang, C. and Shi, Q. (2020) Sulfate radical oxidation of benzophenone: Kinetics, mechanisms and influence of water matrix anions. Environmental Technology, DOI: 10.1080/09593330.2020.1756422£¨SCI, EI, IF 2.213£©

33. Yan, G., Ma, W., Chen, C., Wang, Q., Guo, S., Ma, J.*(2016) Combinations of surfactant flushing and bioremediation for removing fuel hydrocarbons from contaminated soil. CLEAN ¨C Soil, Air, Water 44(8): 984-991.£¨SCI, EI, IF 1.603£©

34. Ma, J.*, Li H., Yang Y. and Li X. (2018) Influence of water matrix species on persulfate oxidation of phenol: reaction kinetics and formation of undesired degradation byproducts. Water Science and Technology, 2017(2):340-350, DOI:10.2166/wst.2018.147£¨SCI, EI, IF 1.638£©

35. Âí½Ü* (2020) ÎÛȾ԰µØÍÁÈÀÆø±»¶¯²ÉÑùÊÖÒÕÑо¿Ï£Íû  ÇéÐοÆѧÑо¿, 33(2), 494-502

36. ÁθßÃ÷, Âí½Ü*, ¹È´ºÔÆ, ¶ÅÏÔÔª, ËÎȨÍþ (2021) ÎÛȾ԰µØÍÁÈÀÆø±»¶¯²ÉÑùÊÖÒÕÑо¿Ï£Íû  ÇéÐοÆѧÑо¿, 34(3), 231-243

37. Âí½Ü* (2021) ÎÒ¹ú»Ó·¢ÐÔÓлúÎÛȾµØ¿éÊÓ²ìÆÀ¹ÀÖб£´æµÄÎÊÌâ¼°¶Ô²ß½¨Òé ÇéÐ餳Ìѧ±¨, 15(1), 3-7

38. Âí½Ü* (2021) ÍÁÈÀÆø¼à²âÔÚÎÛȾµØ¿éÊÓ²ìÆÀ¹ÀÖеÄÓÅÊÆ¡¢¾ÖÏÞ¼°½â¾ö˼Ð÷ ÇéÐ餳Ìѧ±¨, 15(8), 2531-2534

39. Âí½Ü* (2022) µØÏÂË®¼à²âÔÚÎÛȾ԰µØÖÎÀíÖеÄÖ÷Òª×÷Óᢱ£´æÎÊÌâÓë¶Ô²ß½¨Òé ÇéÐ餳Ìѧ±¨, 16(4), 1063-1067

ÆäËû×÷ÕßÂÛÎÄ

40. Liu, J.-W., Wei, K.-H., Xu, S.-W., Cui, J., Ma, J., Xiao, X.-L., Xi, B.-D. and He, X.-S. (2021) Surfactant-enhanced remediation of oil-contaminated soil and groundwater: A review. Science of The Total Environment 756, 144142

41. Garcia-Segura, S., Qu, X.L., Alvarez, P.J.J., Chaplin, B.P., Chen, W., Crittenden, J.C., Feng, Y.J., Gao, G.D., He, Z., Hou, C.H., Hu, X., Jiang, G.B., Kim, J.H., Li, J.S., Li, Q.L., Ma, J., Ma, J.X., Nienhauser, A.B., Niu, J.F., Pan, B.C., Quan, X., Ronzani, F., Villagran, D., Waite, T.D., Walker, W.S., Wang, C., Wong, M.S. and Westerhoff, P. (2020) Opportunities for nanotechnology to enhance electrochemical treatment of pollutants in potable water and industrial wastewater - a perspective. Environmental Science-Nano 7(8), 2178-2194. £¨SCI, IF7.704£©

42. Zhang, T., Lowry, G.V., Capiro, N.L., Chen, J., Chen, W., Chen, Y., Dionysiou, D.D., Elliott, D.W., Ghoshal, S., Hofmann, T., Hsu-Kim, H., Hughes, J., Jiang, C., Jiang, G., Jing, C., Kavanaugh, M., Li, Q., Liu, S., Ma, J., Pan, B., Phenrat, T., Qu, X., Quan, X., Saleh, N., Vikesland, P.J., Wang, Q., Westerhoff, P., Wong, M.S., Xia, T., Xing, B., Yan, B., Zhang, L., Zhou, D. and Alvarez, P.J.J. (2019) In situ remediation of subsurface contamination: opportunities and challenges for nanotechnology and advanced materials. Environmental Science-Nano 6(5), 1283-1302.£¨SCI, IF7.704£©

43. Zhang R., Jiang L., Zhong M., DeVaull G, Lahvis M, Ma J., Zhou Y., Zheng R., Fu Q. (2019) A source depletion model for vapor intrusion involving the influence of building characteristics. Environmental Pollution 2019;246:864-72.£¨SCI, IF 4.358£©

44. Dong, H., Song, Z., Dong, H., Wang, W., Wang, J., Sun, S., Zhang, Z*,Ke, M., Zhang, Z., Wu, W., Ma, J., (2018) A high-efficiency denitrification bioreactor for the treatment of acrylonitrile wastewater using waterborne polyurethane immobilized activated sludge. Bioresource Technology 239: 472-481£¨SCI, IF 5.651£©

45. Verginelli, I., Yao, Y.*, Wang, Y., Ma, J.Suuberg, E.M. (2016) Estimating the oxygenated zone beneath building foundations for petroleum vapor intrusion assessment Journal of Hazardous Materials312: 84-96.£¨SCI, IF6.065£©

46. Da Silva,* M.; Cant?o, M.; Mezzari, M.; Ma, J.; and Nossa, C. (2015) Assessment of bacterial and archaeal community structure in swine wastewater treatment processes. Microbial Ecology70(1):77-87.£¨SCI, IF 3.63£©

47. Xiu, Z.M., Ma, J., and Alvarez, P.J.*(2011) Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions. Environmental Science & Technology45(20): 9003-9008.£¨SCI, IF 6.198£©

48. ¬Ïþϼ*, ÀîÐãÀû, Âí½Ü, ÎâÊç¿É, ³Â³¬ç÷, Îâε(2011)½¹»¯³§¶à»··¼ÌþÎÛȾÍÁÈÀµÄÇ¿»¯Î¢ÉúÎïÐÞ¸´Ñо¿, ÇéÐοÆѧ, 32: 864-869.£¨ÖÐÎĽ¹µãÆÚ¿¯£©

ÆäËû×÷ÕßÖø×÷

49. ¹ù´ºÃ· £¬ÕÔ³¯³É £¬³Â½ø¸» £¬Õ²ÑÇÁ¦ £¬³Â´ºÃ¯ £¬¿×·±öÎ £¬ÂÞһݼ £¬Âí½Ü £¬(2018)¡¶ÇéÐι¤³Ì¸ÅÂÛ¡· £¬¿­Ê±³öÊéÉç £¬ISBN9787563659920

50. Da Silva, M., Ma, J., Alvarez, P.J.*(2015) Methods to assess the fate and impacts of biofuels in aquifer systems, in: McGenity, T.J., Timmis, K.N., Nogales, B. (Eds.), Hydrocarbon and Lipid Microbiology Protocols DOI:10.1007/8623_2015_164£¨Ó¢ÎÄרÖø£©



¡¾ÍøÕ¾µØͼ¡¿¡¾sitemap¡¿